Biotechnology & Genomics (Genetics)

What is Biotechnology?

The term biotechnology means making use of or harnessing biological processes. Most people associate the term biotechnology with "high tech" applications but in reality the term "biotechnology" covers a wide variety of applications ranging from less technology based practices such as standard breeding programs through to very technological practices such as genetic engineering.

Links for more information:

The accompanying Glossary of Terms webpage provides definitions and a cell poster image to help further your understanding of biotechnology. You can find a definition for the bold underlined words on this "Glossary of Terms" webpage or by clicking on each hyperlinked word or phrase. If you would like to have the Glossary of Terms page come up in a separate window for easy reference as you read, hold the SHIFT key as you click the link for the Glossary of Terms.

There are many websites available with information on different aspects of biotechnology and genomics, below are two that can get you started if you want more information on this topic.

The Geee! In Genome website (Genome Canada and the Canadian Museum of Nature) http://nature.ca/genome/index_e.cfm

Scitable by Nature Education http://www.nature.com/scitable (Note: This site is only available in English)

Why does DFO use biotechnology?

Currently the biotechnology work within DFO is focussed on Genomics (Genetics), looking at the DNA (Deoxyribose Nucleic Acid) and/or RNA (Ribose Nucleic Acid). DNA and RNA are common to all biological organisms. DNA is the "blueprint" for the organism (passed on from parent to offspring). By looking at the DNA we can look at some of the fundamental similarities and differences between organisms − within and between species, within and between populations or within and between individuals. Beyond looking at DNA, RNA is the first level of how that blueprint is used. When we look at the RNA, we are looking at gene expression.

Researchers in DFO use biotechnology in two ways:

  1. As part of studies on aquatic organisms or;
  2. To provide information to support its mandate to regulate the products of aquatic biotechnology.

Link for more information:

For more information on the National Aquatic Biotechnology and Genomics Research and Development Program and the Aquatic Biotechnology Regulatory Program, please visit the Aquatic Biotechnology site at http://www.dfo-mpo.gc.ca/Science/biotech/index-eng.htm

How is biotechnology used at BIO?

In the Maritimes region the biotechnology program currently makes use of molecular biology techniques and technologies to investigate the genetics and genomics of a variety of aquatic organisms. Currently this means primarily looking at the DNA from the sample. These same technologies and techniques can (and are) applied to a wide variety of organisms ranging from microorganisms, aquatic invertebrates and vertebrates. The type of questions being addressed by looking at their DNA depends on the organism but include:

  • Species identification:
    Not all species can easily be distinguished based on their appearance. In some cases, the entire organism is not available for identification. Using DNA based methods species identification can be done from small pieces of tissue such as muscle, fin clip, body mucus, scales, blood or hemolymph etc. Species identification is also very important so researchers can measure biodiversity.
  • Parentage:
    Using DNA based tests we can trace an individual back to its parents. This is important in aquaculture or other breeding programs where fish (or invertebrates) are raised in a group. This information can then be used to minimize inbreeding.
  • Population structure:
    Population genetics is an area of genetics that looks at the frequency of alleles between groups of individuals to see if there are differences. The results of these studies provide information important for management and/or conservation of populations or species. For these types of studies we use microsatellites (also known as Short Sequence Repeat (SSR)) loci or Amplified Fragment Length Polymorphisms (AFLP) products.
  • Ecosystem health:
    A newer challenge for DFO is how to determine if a whole ecosystem is healthy or not and how it changes over time. One indicator being investigated to help address this issue is looking at microbial ecology using metagenomics. For this we can look at a piece of the DNA from all the bacteria in a sample of water and see what bacteria are there and how they change. Bacteria respond quickly to changes in the environment as well as being a food source for many microscopic animals.
  • Development of molecular biology tools
    Before the types of studies described above can be undertaken the tools have to be available. While the scientific literature is an important source of information, there are many species for which the required information is not available or is insufficient. In that situation the first step is to obtain the information ourselves. This can include isolating the loci or adapting procedures for the specific species or research question.

Who is working on Biotechnology and Genomics (Genetics) at BIO?

Biotechnology is a tool that can be used by many DFO scientists, but it requires specialized equipment and training. As a result there are a couple of groups that specialize in this area.